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Synthesis of enantiopure 1,2,3-triazolylidene-type
mesoionic carbene (MIC) conjugate acids featuring
a rigid bicyclic scaffold†

Vojtěch Dočekal, a,b Mohand Melaimi, b Simona Petrželová,c Jan Veselý,a

Xiaoyu Yan d and Guy Bertrand *b

Chiral NHCs have found numerous applications as ligands for transition metals and in their own right for

asymmetric catalysis. Here, we report a synthetic route from L-malic acid to enantiopure 1,2,3-triazoliums

(mesoionic carbene conjugate acids) with a chiral center in a fused ring.

Introduction

Chirality, a fundamental property of nature, is vital in many
fields including chemistry, biology, physics and materials
science. Reactions employing chiral transition metal catalysts
or organocatalysts have been the most efficient ways to obtain
enantiomerically pure compounds from achiral feedstocks.
Over the past decades, N-heterocyclic carbenes (NHCs) have
been demonstrated to be both powerful ligands for transition
metal catalysts1 and organocatalysts in their own right,2 and a
series of chiral NHCs have been reported.3 The stereocenter
can be located in the side chain of NHCs (Fig. 1a, type A) or
the saturated backbone (Fig. 1a, type B). These two types of
chiral NHCs have been shown to perform well as ligands for
asymmetric metal catalysis.4 However, a breakthrough for
asymmetric induction in NHC-catalyzed reactions came from
the work of Leeper,5 Enders,6 Rovis,7 and Bode,8 which intro-
duced rigid bicyclic scaffolds (Fig. 1a, type C, and Fig. 1b). For
example, excellent enantioselectivity was observed in NHC-Ir
catalyzed transfer hydrogenation,9 NHC-Cu catalyzed allylic
silylation10 and NHC-catalyzed organic transformations.2

Another type of stable carbene, namely mesoionic carbenes,
and more specifically 1,2,3-triazol-5-ylidenes,11 has more

recently shown excellent potential as ligands for transition
metal catalysts12 and organocatalysts both via two-electron13

and single-electron transfer processes.14 Importantly, MICs are
readily available in large quantities, and contrary to other car-
benes, they do not dimerize. So far, there are just a handful

Fig. 1 Chiral NHCs and MICs.
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examples of chiral MICs, all of them featuring flexible side
chain chirality (Fig. 1c).15–21

Considering the remarkable potential of MICs in catalysis,
it is necessary to broaden the types of chiral MICs/conjugate
acids. Inspired by the success of pyrrolidine-fused chiral NHCs
(Fig. 1b), herein we report the preparation of enantiopure pyr-
rolidine-fused 1,2,3-triazol-5-ylidene conjugate acids using a
readily available starting material from the chiral pool
(Fig. 1d).

Results and discussion

To test the feasibility of the key sequence of our synthetic strat-
egy, we first prepared an achiral version of the fused triazole,
using pent-4-yn-1-ol (1) as a precursor. Gratifyingly, we found
that the desired heterocycle was readily accessible in three
steps (Scheme 1).22 The alcohol was treated with methanesul-
fonyl chloride, followed by a substitution reaction of the
corresponding mesylate with sodium azide; then, an intra-
molecular thermally induced Huisgen cycloaddition reaction
afforded the desired fused triazole 2, which was isolated in
77% yield (over three steps). Lastly, quaternization by copper-
catalyzed N-arylation23 using diaryliodonium salts produced
the corresponding achiral conjugate acids MIC-H+a,b in excel-
lent isolated yields.

Then, we turned our attention to the chiral version. As start-
ing material, we chose enantiopure L-malic acid (Scheme 2).
This chiral pool chemical was converted in three steps into
hydroxylactone 3 using the previously described conditions.24

First, protection of the secondary alcohol and carboxyl group
with 2,2-dimethoxypropane, followed by reduction of the
second carboxylic moiety by borane and lastly an acid-cata-
lyzed ring closing esterification afforded hydroxylactone 3
(56% yield, over three steps, 15 g scale). This sequence is easily
scalable to 50 g scale of L-malic acid, with similar yields (52%).
Then, 3 was O-alkylated and O-benzylated by a reaction of 3
with benzyl-2,2,2-trichloroacetamidate and methyl iodide to
yield 4a and 4b, respectively, with the retention of the con-
figuration, whereas 4c was prepared, with the inversion of the
configuration, by a successive reaction with DIAD and phenol.
The corresponding lactones 4 were converted to alcohols 5 by
a two-step procedure. First, lactones 4 were reduced with
DIBALH, giving the corresponding lactols, which were con-
verted into 5 using the Bestmann–Ohira reagent (21–61% yield
over two steps). From 5, the 1,2,3-triazole ring was achieved in

39–77% yields, in three steps as described for the parent com-
pound (Scheme 1). It is worth mentioning that the chiral
HPLC of the selected triazoles 6 confirmed that no significant
decrease in enantiopurity occurred during the whole synthetic
sequence from the malic acid (Scheme 2). Lastly, quaterniza-
tion by copper-catalyzed N-arylation23 using diaryliodonium
salts provided a library of triazolium salts MIC-H+c–g in good
to excellent yields (72–94%).

The absolute configuration of the chiral center of MIC-H+f
was assigned R using X-ray diffraction analysis (Fig. 2; for
more details, refer to the ESI†).

With precursors in hand, and as a proof of concept, we pre-
pared free carbenes MICf,g by treatment of the corresponding
triazolium MIC-H+f and MIC-H+g with an excess of KOtBu at
0 °C (Scheme 3). The resulting carbenes were characterized by
NMR spectroscopy, with the carbene carbon signals at
195.5 ppm (MICf ) and 199.7 ppm (MICg) in THF-d8. These
chemical shifts were in accordance with those previously
reported for MICs.11 No significant decomposition was
observed in solution at 0 °C after 48 hours. However, MICg
was totally decomposed after 5 h at 40 °C (for more infor-

Scheme 1 Synthesis of the achiral conjugate acid of pyrrolidine-fused
1,2,3-triazol-5-ylidenes. MsCl: methanesulfonyl chloride; Mes: 2,4,6-
trimethylphenyl.

Scheme 2 Synthesis of the chiral conjugate acid of pyrrolidine-fused
1,2,3-triazol-5-ylidenes. DIAD: diisopropyl azodicarboxylate.

Fig. 2 X-ray crystal structure of MIC-H+f.

Scheme 3 Generation of MICf and MICg.
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mation, refer to the ESI†). To check that no racemization
occurred during the deprotonation of the triazolium salts, we
prepared MICf at 0 °C following the procedure described above
and added 3 equivalents of tetrafluoroboric acid after
15 minutes. Measurement of the optical rotation of the regen-
erated MIC-H+f remained unchanged compared to the original
sample.

Conclusions

This study shows that enantiopure 1,2,3-triazolium salts featur-
ing a fused side chain with a chirogenic center can be prepared
in large quantities from a precursor belonging to the chiral
pool. Importantly, starting from cheap L-malic acid, both enan-
tiomers of these chiral protonated MICs can be prepared,
depending on the method used to transform hydroxylactone 3
into 4. Additionally, the ensuing free chiral MICs can be spec-
troscopically observed and were stable for a few days at low
temperatures. Due to the success of their NHC cousins, featur-
ing the same type of fused side chain chirality, numerous
applications of these MICs can be expected in asymmetric
catalysis.
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